Evolution and epidemic spread of SARS-CoV-2 in Brazil.
Brazil currently has one of the fastest-growing severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) epidemics in the world. Because of limited available data, assessments of the impact of nonpharmaceutical interventions (NPIs) on this virus spread remain challenging. Using a mobility-driven transmission model, we show that NPIs reduced the reproduction number from >3 to 1 to 1.6 in São Paulo and Rio de Janeiro. Sequencing of 427 new genomes and analysis of a geographically representative genomic dataset identified >100 international virus introductions in Brazil. We estimate that most (76%) of the Brazilian strains fell in three clades that were introduced from Europe between 22 February and 11 March 2020. During the early epidemic phase, we found that SARS-CoV-2 spread mostly locally and within state borders. After this period, despite sharp decreases in air travel, we estimated multiple exportations from large urban centers that coincided with a 25% increase in average traveled distances in national flights. This study sheds new light on the epidemic transmission and evolutionary trajectories of SARS-CoV-2 lineages in Brazil and provides evidence that current interventions remain insufficient to keep virus transmission under control in this country.
Authors
Darlan S Candido; Ingra M Claro; Jaqueline G de Jesus; William M Souza; Filipe R R Moreira; Simon Dellicour; Thomas A Mellan; Louis du Plessis; Rafael H M Pereira; Flavia C S Sales; Erika R Manuli; Julien Thézé; Luiz Almeida; Mariane T Menezes; Carolina M Voloch; Marcilio J Fumagalli; Thaís M Coletti; Camila A M da Silva; Mariana S Ramundo; Mariene R Amorim; Henrique H Hoeltgebaum; Swapnil Mishra; Mandev S Gill; Luiz M Carvalho; Lewis F Buss; Carlos A Prete; Jordan Ashworth; Helder I Nakaya; Pedro S Peixoto; Oliver J Brady; Samuel M Nicholls; Amilcar Tanuri; Átila D Rossi; Carlos K V Braga; Alexandra L Gerber; Ana Paula de C Guimarães; Nelson Gaburo; Cecila Salete Alencar; Alessandro C S Ferreira; Cristiano X Lima; José Eduardo Levi; Celso Granato; Giulia M Ferreira; Ronaldo S Francisco; Fabiana Granja; Marcia T Garcia; Maria Luiza Moretti; Mauricio W Perroud; Terezinha M P P Castiñeiras; Carolina S Lazari; Sarah C Hill; Andreza Aruska de Souza Santos; Camila L Simeoni; Julia Forato; Andrei C Sposito; Angelica Z Schreiber; Magnun N N Santos; Camila Zolini de Sá; Renan P Souza; Luciana C Resende-Moreira; Mauro M Teixeira; Josy Hubner; Patricia A F Leme; Rennan G Moreira; Maurício L Nogueira; Neil M Ferguson; Silvia F Costa; José Luiz Proenca-Modena; Ana Tereza R Vasconcelos; Samir Bhatt; Philippe Lemey; Chieh-Hsi Wu; Andrew Rambaut; Nick J Loman; Renato S Aguiar; Oliver G Pybus; Ester C Sabino; Nuno Rodrigues Faria
External link
Publication Year
Publication Journal
Associeted Project
Digital Epidemiology
Lista de serviços
-
Genomic analyses reveal broad impact of miR-137 on genes associated with malignant transformation and neuronal differentiation in glioblastoma cells.Genomic analyses reveal broad impact of miR-137 on genes associated with malignant transformation and neuronal differentiation in glioblastoma cells.
-
RNA-Binding Protein Musashi1 Is a Central Regulator of Adhesion Pathways in Glioblastoma.RNA-Binding Protein Musashi1 Is a Central Regulator of Adhesion Pathways in Glioblastoma.
-
MicroRNA Transcriptome Profiling in Heart of Trypanosoma cruzi-Infected Mice: Parasitological and Cardiological Outcomes.MicroRNA Transcriptome Profiling in Heart of Trypanosoma cruzi-Infected Mice: Parasitological and Cardiological Outcomes.
-
Genome mapping and expression analyses of human intronic noncoding RNAs reveal tissue-specific patterns and enrichment in genes related to regulation of transcription.Genome mapping and expression analyses of human intronic noncoding RNAs reveal tissue-specific patterns and enrichment in genes related to regulation of transcription.
-
Antimicrobial peptide LL-37 participates in the transcriptional regulation of melanoma cells.Antimicrobial peptide LL-37 participates in the transcriptional regulation of melanoma cells.
-
Down-regulation of 14q32-encoded miRNAs and tumor suppressor role for miR-654-3p in papillary thyroid cancer.Down-regulation of 14q32-encoded miRNAs and tumor suppressor role for miR-654-3p in papillary thyroid cancer.
-
Integration of miRNA and gene expression profiles suggest a role for miRNAs in the pathobiological processes of acute Trypanosoma cruzi infection.Integration of miRNA and gene expression profiles suggest a role for miRNAs in the pathobiological processes of acute Trypanosoma cruzi infection.
-
Integrative Biology Approaches Applied to Human DiseasesIntegrative Biology Approaches Applied to Human Diseases
-
Proteomics reveals disturbances in the immune response and energy metabolism of monocytes from patients with septic shock.Proteomics reveals disturbances in the immune response and energy metabolism of monocytes from patients with septic shock.
-
Genomics, epigenomics and pharmacogenomics of Familial Hypercholesterolemia (FHBGEP): A study protocol.Genomics, epigenomics and pharmacogenomics of Familial Hypercholesterolemia (FHBGEP): A study protocol.
-
Melatonin-Index as a biomarker for predicting the distribution of presymptomatic and asymptomatic SARS-CoV-2 carriersMelatonin-Index as a biomarker for predicting the distribution of presymptomatic and asymptomatic SARS-CoV-2 carriers
-
Profiling plasma-extracellular vesicle proteins and microRNAs in diabetes onset in middle-aged male participants in the ELSA-Brasil study.Profiling plasma-extracellular vesicle proteins and microRNAs in diabetes onset in middle-aged male participants in the ELSA-Brasil study.
-
Big Data and machine learning in cancer theranosticsBig Data and machine learning in cancer theranostics
-
Genomic positional conservation identifies topological anchor point RNAs linked to developmental loci.Genomic positional conservation identifies topological anchor point RNAs linked to developmental loci.
-
Integrative systems immunology uncovers molecular networks of the cell cycle that stratify COVID-19 severityIntegrative systems immunology uncovers molecular networks of the cell cycle that stratify COVID-19 severity