Hydroquinone exposure alters the morphology of lymphoid organs in vaccinated C57Bl/6 mice.
The influenza is a common viral infection that can be fatal, especially in high-risk groups such as children, pregnant women, elderly, and immune-deficient individuals. Vaccination is the most efficient approach to prevent the spreading of viral infection and promote individual and public health. In contrast, exposure to environmental pollutants such as cigarette smoke reduces the efficacy of vaccination. We investigated whether chronic exposure to hydroquinone (HQ), the most abundant compound of the tobacco particulate phase, could impair the adaptive immune responses elicited by influenza vaccination. For this, adult male C57BL/6 mice were daily exposed to either nebulized HQ or PBS for 1 h for a total of eight weeks. At weeks 6 and 8, the mice were primed and boosted with the trivalent influenza vaccine via IM respectively. Although the HQ exposure did not alter the body weight of the mice and the biochemical and hematological parameters, the pollutant increased the oxidative stress in splenocytes of immunized animals, modified the morphology of spleen follicles, and augmented the size of their lymph nodes. The lymphoid organs of HQ-exposed mice presented a similar number of vaccine-specific IgG-secreting cells, titers of vaccine-specific total IgG, and respective subclasses. Transcriptome studies with HQ, benzene, or cigarette smoke exposure were also analyzed. The genes up-regulated upon pollutant exposure were associated with neutrophil migration and were shown to be co-expressed with antibody-secreting cell genes. Therefore, these findings suggest that HQ exposure may trigger an immune-compensatory mechanism that enhances the humoral responses induced by influenza vaccination.
Authors
André Luis Fabris; Andre Vinicius Nunes; Viviane Schuch; Marina de Paula-Silva; Gho Rocha; Helder I Nakaya; Paulo Lee Ho; Eduardo L V Silveira; Sandra Helena Poliselli Farsky
External link
Publication Year
Publication Journal
Associeted Project
Microbiology or Immunology
Lista de serviços
-
Gene regulatory and signaling networks exhibit distinct topological distributions of motifs.Gene regulatory and signaling networks exhibit distinct topological distributions of motifs.
-
Gene signatures of autopsy lungs from obese patients with COVID-19.Gene signatures of autopsy lungs from obese patients with COVID-19.
-
Network Medicine: Methods and ApplicationsNetwork Medicine: Methods and Applications
-
ACE2 Expression Is Increased in the Lungs of Patients With Comorbidities Associated With Severe COVID-19.ACE2 Expression Is Increased in the Lungs of Patients With Comorbidities Associated With Severe COVID-19.
-
Drug repositioning for psychiatric and neurological disorders through a network medicine approach.Drug repositioning for psychiatric and neurological disorders through a network medicine approach.
-
Linking proteomic alterations in schizophrenia hippocampus to NMDAr hypofunction in human neurons and oligodendrocytes.Linking proteomic alterations in schizophrenia hippocampus to NMDAr hypofunction in human neurons and oligodendrocytes.
-
In-depth analysis of laboratory parameters reveals the interplay between sex, age, and systemic inflammation in individuals with COVID-19.In-depth analysis of laboratory parameters reveals the interplay between sex, age, and systemic inflammation in individuals with COVID-19.
-
The evolution of knowledge on genes associated with human diseasesThe evolution of knowledge on genes associated with human diseases
-
Network vaccinology.Network vaccinology.
-
Pyruvate kinase M2 mediates IL-17 signaling in keratinocytes driving psoriatic skin inflammationPyruvate kinase M2 mediates IL-17 signaling in keratinocytes driving psoriatic skin inflammation
-
Transcriptome analysis of six tissues obtained post-mortem from sepsis patientsTranscriptome analysis of six tissues obtained post-mortem from sepsis patients
-
Gene Signatures of Symptomatic and Asymptomatic Clinical-Immunological Profiles of Human Infection by Leishmania (L.) chagasi in Amazonian BrazilGene Signatures of Symptomatic and Asymptomatic Clinical-Immunological Profiles of Human Infection by Leishmania (L.) chagasi in Amazonian Brazil