PD-1/PD-L1 inhibition enhances chemotherapy-induced neuropathic pain by suppressing neuroimmune antinociceptive signaling
Cytotoxic agents synergize with immune checkpoint inhibitors and improve outcomes for patients with several cancer types. Nonetheless, a parallel increase in the incidence of dose-limiting side effects, such as peripheral neuropathy, is often observed. Here, we investigated the role of the programmed cell death-1 (PD-1)/programmed death-ligand 1 (PD-L1) axis in the modulation of paclitaxel-induced neuropathic pain. We found that human and mouse neural tissues, including the dorsal root ganglion (DRG), expressed basal levels of PD-1 and PD-L1. During the development of paclitaxel-induced neuropathy, an increase in PD-L1 expression was observed in macrophages from the DRG. This effect depended on Toll-like receptor 4 activation by paclitaxel. Furthermore, PD-L1 inhibited pain behavior triggered by paclitaxel or formalin in mice, suggesting that PD-1/PD-L1 signaling attenuates peripheral neuropathy development. Consistent with this, we observed that the combined use of anti–PD-L1 plus paclitaxel increased mechanical allodynia and chronic neuropathy development induced by single agents. This effect was associated with higher expression of inflammatory markers (Tnf, Il6, and Cx3cr1) in peripheral nervous tissue. Together, these results suggest that PD-1/PD-L1 inhibitors enhance paclitaxel-induced neuropathic pain by suppressing PD-1/PD-L1 antinociceptive signaling.
Authors
Wanderley, Carlos Wagner S; Maganin, Alexandre GM; Adjafre, Beatriz; Mendes, Atlante S; Silva, Conceii§i£o Elidianne Anibal; Quadros, Andreza Urba; Luiz, Joi£o Paulo Mesquita; Silva, Camila Meirelles S; Silva, Nicole R; Oliveira, Francisco Fabio Bezerra;
External link
Publication Year
Publication Journal
Associeted Project
Microbiology or Immunology
Lista de serviços
-
Gene regulatory and signaling networks exhibit distinct topological distributions of motifs.Gene regulatory and signaling networks exhibit distinct topological distributions of motifs.
-
Gene signatures of autopsy lungs from obese patients with COVID-19.Gene signatures of autopsy lungs from obese patients with COVID-19.
-
Network Medicine: Methods and ApplicationsNetwork Medicine: Methods and Applications
-
ACE2 Expression Is Increased in the Lungs of Patients With Comorbidities Associated With Severe COVID-19.ACE2 Expression Is Increased in the Lungs of Patients With Comorbidities Associated With Severe COVID-19.
-
Drug repositioning for psychiatric and neurological disorders through a network medicine approach.Drug repositioning for psychiatric and neurological disorders through a network medicine approach.
-
Linking proteomic alterations in schizophrenia hippocampus to NMDAr hypofunction in human neurons and oligodendrocytes.Linking proteomic alterations in schizophrenia hippocampus to NMDAr hypofunction in human neurons and oligodendrocytes.
-
In-depth analysis of laboratory parameters reveals the interplay between sex, age, and systemic inflammation in individuals with COVID-19.In-depth analysis of laboratory parameters reveals the interplay between sex, age, and systemic inflammation in individuals with COVID-19.
-
The evolution of knowledge on genes associated with human diseasesThe evolution of knowledge on genes associated with human diseases
-
Network vaccinology.Network vaccinology.
-
Pyruvate kinase M2 mediates IL-17 signaling in keratinocytes driving psoriatic skin inflammationPyruvate kinase M2 mediates IL-17 signaling in keratinocytes driving psoriatic skin inflammation
-
Transcriptome analysis of six tissues obtained post-mortem from sepsis patientsTranscriptome analysis of six tissues obtained post-mortem from sepsis patients
-
Gene Signatures of Symptomatic and Asymptomatic Clinical-Immunological Profiles of Human Infection by Leishmania (L.) chagasi in Amazonian BrazilGene Signatures of Symptomatic and Asymptomatic Clinical-Immunological Profiles of Human Infection by Leishmania (L.) chagasi in Amazonian Brazil