Sex-Based Differences in Thyroid Plasma B Cell Infiltration: Implications for Autoimmune Disease Susceptibility.
Thyroid autoimmune diseases, such as Hashimoto thyroiditis and Graves disease, are significantly more prevalent in women than in men, suggesting underlying biological differences in immune system function and regulation between sexes. Plasma B cells are crucial in autoimmunity due to their role in producing antibodies targeting self-antigens, but their presence in the thyroids of women without clinical autoimmune diseases remains largely unexplored. This study investigates the infiltration of plasma B cells in female thyroids specifically excluding those with any clinical signs of autoimmune diseases. Using bulk RNA-seq analysis, we identified significant sex differences in gene expression profiles, particularly in genes associated with plasma B cells. Single-cell RNA-seq and spatial transcriptomic analyses further revealed that the CXCL13-CXCR5 signaling axis plays a pivotal role in recruiting and organizing plasma B cells within the thyroid tissue. These findings suggest that the inherent presence of plasma B cells in the female thyroid, driven by CXCL13, may contribute to the higher risk of developing autoimmune thyroid diseases in women. Our study provides new insights into the immune landscape of the thyroid and underscores the importance of understanding sex-specific differences in immune cell distribution and function.
Authors
Pereira Vasconcelos A, Santos E Silva JC, Simizo A, Peña Avila J
External link
Publication Year
Publication Journal
Associeted Project
Systems Immunology of Human Diseases
Lista de serviços
-
StructRNAfinder: an automated pipeline and web server for RNA families prediction.StructRNAfinder: an automated pipeline and web server for RNA families prediction.
-
CEMiTool: a Bioconductor package for performing comprehensive modular co-expression analyses.CEMiTool: a Bioconductor package for performing comprehensive modular co-expression analyses.
-
webCEMiTool: Co-expression Modular Analysis Made Easy.webCEMiTool: Co-expression Modular Analysis Made Easy.
-
Assessing the Impact of Sample Heterogeneity on Transcriptome Analysis of Human Diseases Using MDP Webtool.Assessing the Impact of Sample Heterogeneity on Transcriptome Analysis of Human Diseases Using MDP Webtool.
-
Predicting RNA Families in Nucleotide Sequences Using StructRNAfinder.Predicting RNA Families in Nucleotide Sequences Using StructRNAfinder.
-
OUTBREAK: a user-friendly georeferencing online tool for disease surveillance.OUTBREAK: a user-friendly georeferencing online tool for disease surveillance.
-
Noninvasive prenatal paternity determination using microhaplotypes: a pilot study.Noninvasive prenatal paternity determination using microhaplotypes: a pilot study.
-
Editorial: User-Friendly Tools Applied to Genetics or Systems Biology.Editorial: User-Friendly Tools Applied to Genetics or Systems Biology.
-
Automatic detection of the parasite Trypanosoma cruzi in blood smears using a machine learning approach applied to mobile phone imagesAutomatic detection of the parasite Trypanosoma cruzi in blood smears using a machine learning approach applied to mobile phone images
-
Tucuxi-BLAST: Enabling fast and accurate record linkage of large-scale health-related administrative databases through a DNA-encoded approachTucuxi-BLAST: Enabling fast and accurate record linkage of large-scale health-related administrative databases through a DNA-encoded approach
-
Ten quick tips for harnessing the power of ChatGPT in computational biologyTen quick tips for harnessing the power of ChatGPT in computational biology