Defining CD8+ T cells that provide the proliferative burst after PD-1 therapy.
Chronic viral infections are characterized by a state of CD8 + T-cell dysfunction that is associated with expression of the programmed cell death 1 (PD-1) inhibitory receptor. A better understanding of the mechanisms that regulate CD8 + T-cell responses during chronic infection is required to improve immunotherapies that restore function in exhausted CD8 + T cells. Here we identify a population of virus-specific CD8 + T cells that proliferate after blockade of the PD-1 inhibitory pathway in mice chronically infected with lymphocytic choriomeningitis virus (LCMV). These LCMV-specific CD8 + T cells expressed the PD-1 inhibitory receptor, but also expressed several costimulatory molecules such as ICOS and CD28. This CD8 + T-cell subset was characterized by a unique gene signature that was related to that of CD4 + T follicular helper (T FH ) cells, CD8 + T cell memory precursors and haematopoietic stem cell progenitors, but that was distinct from that of CD4 + T H 1 cells and CD8 + terminal effectors. This CD8 + T-cell population was found only in lymphoid tissues and resided predominantly in the T-cell zones along with naive CD8 + T cells. These PD-1 + CD8 + T cells resembled stem cells during chronic LCMV infection, undergoing self-renewal and also differentiating into the terminally exhausted CD8 + T cells that were present in both lymphoid and non-lymphoid tissues. The proliferative burst after PD-1 blockade came almost exclusively from this CD8 + T-cell subset. Notably, the transcription factor TCF1 had a cell-intrinsic and essential role in the generation of this CD8 + T-cell subset. These findings provide a better understanding of T-cell exhaustion and have implications in the optimization of PD-1-directed immunotherapy in chronic infections and cancer.
Authors
Se Jin Im; Masao Hashimoto; Michael Y Gerner; Junghwa Lee; Haydn T Kissick; Matheus C Burger; Qiang Shan; J Scott Hale; Judong Lee; Tahseen H Nasti; Arlene H Sharpe; Gordon J Freeman; Ronald N Germain; Helder I Nakaya; Hai-Hui Xue; Rafi Ahmed
External link
Publication Year
Publication Journal
Associeted Project
Microbiology or Immunology
Lista de serviços
-
As antisense RNA gets intronic.As antisense RNA gets intronic.
-
Androgen responsive intronic non-coding RNAs.Androgen responsive intronic non-coding RNAs.
-
Conserved tissue expression signatures of intronic noncoding RNAs transcribed from human and mouse loci.Conserved tissue expression signatures of intronic noncoding RNAs transcribed from human and mouse loci.
-
The intronic long noncoding RNA ANRASSF1 recruits PRC2 to the RASSF1A promoter, reducing the expression of RASSF1A and increasing cell proliferation.The intronic long noncoding RNA ANRASSF1 recruits PRC2 to the RASSF1A promoter, reducing the expression of RASSF1A and increasing cell proliferation.
-
Antisense intronic non-coding RNA levels correlate to the degree of tumor differentiation in prostate cancer.Antisense intronic non-coding RNA levels correlate to the degree of tumor differentiation in prostate cancer.
-
Insight Into the Long Noncoding RNA and mRNA Coexpression Profile in the Human Blood Transcriptome Upon Leishmania infantum Infection.Insight Into the Long Noncoding RNA and mRNA Coexpression Profile in the Human Blood Transcriptome Upon Leishmania infantum Infection.
-
Long non-coding RNAs associated with infection and vaccine-induced immunityLong non-coding RNAs associated with infection and vaccine-induced immunity
-
Comparative transcriptomic analysis of long noncoding RNAs in Leishmania-infected human macrophagesComparative transcriptomic analysis of long noncoding RNAs in Leishmania-infected human macrophages