Identification of pathogenic variants in the Brazilian cohort with Familial hypercholesterolemia using exon-targeted gene sequencing
Familial hypercholesterolemia (FH) is a monogenic disease characterized by high plasma low-density lipoprotein cholesterol (LDL-c) levels and increased risk of premature atherosclerotic cardiovascular disease. Mutations in FH-related genes account for 40% of FH cases worldwide. In this study, we aimed to assess the pathogenic variants in FH-related genes in the Brazilian FH cohort FHBGEP using exon-targeted gene sequencing (ETGS) strategy. FH patients (n = 210) were enrolled at five clinical sites and peripheral blood samples were obtained for laboratory testing and genomic DNA extraction. ETGS was performed using MiSeq platform (Illumina). To identify deleterious variants in LDLR, APOB, PCSK9, and LDLRAP1, the long-reads were subjected to Burrows-Wheeler Aligner (BWA) for alignment and mapping, followed by variant calling using Genome Analysis Toolkit (GATK) and ANNOVAR for variant annotation. The variants were further filtered using in-house custom scripts and classified according to the American College Medical Genetics and Genomics (ACMG) guidelines. A total of 174 variants were identified including 85 missense, 3 stop-gain, 9 splice-site, 6 InDel, and 71 in regulatory regions (3'UTR and 5'UTR). Fifty-two patients (24.7%) had 30 known pathogenic or likely pathogenic variants in FH-related genes according to the American College Medical and Genetics and Genomics guidelines. Fifty-three known variants were classified as benign, or likely benign and 87 known variants have shown uncertain significance. Four novel variants were discovered and classified as such due to their absence in existing databases. In conclusion, ETGS and in silico prediction studies are useful tools for screening deleterious variants and identification of novel variants in FH-related genes, they also contribute to the molecular diagnosis in the FHBGEP cohort
Authors
Borges JB, Oliveira VF, Dagli-Hernandez C, et al.
External link
Publication Year
Publication Journal
Associeted Project
Microbiology or Immunology
Lista de serviços
-
Systems vaccinology: its promise and challenge for HIV vaccine development.Systems vaccinology: its promise and challenge for HIV vaccine development.
-
Systems vaccinology: learning to compute the behavior of vaccine induced immunity.Systems vaccinology: learning to compute the behavior of vaccine induced immunity.
-
Systems biology of vaccination in the elderly.Systems biology of vaccination in the elderly.
-
Immunity to viruses: learning from successful human vaccines.Immunity to viruses: learning from successful human vaccines.
-
Systems biological approaches to measure and understand vaccine immunity in humans.Systems biological approaches to measure and understand vaccine immunity in humans.
-
Gene signatures related to B-cell proliferation predict influenza vaccine-induced antibody response.Gene signatures related to B-cell proliferation predict influenza vaccine-induced antibody response.
-
Vaccinology in the era of high-throughput biology.Vaccinology in the era of high-throughput biology.
-
Systems vaccinology: Enabling rational vaccine design with systems biological approaches.Systems vaccinology: Enabling rational vaccine design with systems biological approaches.
-
Systems Vaccinology Applied to DNA Vaccines: Perspective and Challenges.Systems Vaccinology Applied to DNA Vaccines: Perspective and Challenges.
-
Adjuvanting a Simian Immunodeficiency Virus Vaccine with Toll-Like Receptor Ligands Encapsulated in Nanoparticles Induces Persistent Antibody Responses and Enhanced Protection in TRIM5α Restrictive Macaques.Adjuvanting a Simian Immunodeficiency Virus Vaccine with Toll-Like Receptor Ligands Encapsulated in Nanoparticles Induces Persistent Antibody Responses and Enhanced Protection in TRIM5α Restrictive Macaques.
-
Methods for predicting vaccine immunogenicity and reactogenicity.Methods for predicting vaccine immunogenicity and reactogenicity.
-
Antigenicity prediction and vaccine recommendation of human influenza virus A (H3N2) using convolutional neural networks.Antigenicity prediction and vaccine recommendation of human influenza virus A (H3N2) using convolutional neural networks.
-
Pneumococcal colonization impairs mucosal immune responses to live attenuated influenza vaccine.Pneumococcal colonization impairs mucosal immune responses to live attenuated influenza vaccine.
-
Human Transcriptomic Response to the VSV-Vectored Ebola Vaccine.Human Transcriptomic Response to the VSV-Vectored Ebola Vaccine.
-
Induction of Cell Cycle and NK Cell Responses by Live-Attenuated Oral Vaccines against Typhoid Fever.Induction of Cell Cycle and NK Cell Responses by Live-Attenuated Oral Vaccines against Typhoid Fever.
-
Systems Biology Analysis of the Radiation-Attenuated Schistosome Vaccine Reveals a Role for Growth Factors in Protection and Hemostasis Inhibition in Parasite Survival.Systems Biology Analysis of the Radiation-Attenuated Schistosome Vaccine Reveals a Role for Growth Factors in Protection and Hemostasis Inhibition in Parasite Survival.
-
Molecular alterations in human milk in simulated maternal nasal mucosal infection with live attenuated influenza vaccinationMolecular alterations in human milk in simulated maternal nasal mucosal infection with live attenuated influenza vaccination
-
Systems biology of immunity to MF59-adjuvanted versus nonadjuvanted trivalent seasonal influenza vaccines in early childhood.Systems biology of immunity to MF59-adjuvanted versus nonadjuvanted trivalent seasonal influenza vaccines in early childhood.
-
Systems analysis of protective immune responses to RTS,S malaria vaccination in humans.Systems analysis of protective immune responses to RTS,S malaria vaccination in humans.
-
Systems vaccinology.Systems vaccinology.
-
Systems biology approach predicts immunogenicity of the yellow fever vaccine in humans.Systems biology approach predicts immunogenicity of the yellow fever vaccine in humans.
-
Systems biology of vaccination for seasonal influenza in humans.Systems biology of vaccination for seasonal influenza in humans.
-
Prior upregulation of interferon pathways in the nasopharynx impacts viral shedding following live attenuated influenza vaccine challenge in childrenPrior upregulation of interferon pathways in the nasopharynx impacts viral shedding following live attenuated influenza vaccine challenge in children
-
Systems Analysis of Immunity to Influenza Vaccination across Multiple Years and in Diverse Populations Reveals Shared Molecular Signatures.Systems Analysis of Immunity to Influenza Vaccination across Multiple Years and in Diverse Populations Reveals Shared Molecular Signatures.
-
Molecular signatures of antibody responses derived from a systems biology study of five human vaccines.Molecular signatures of antibody responses derived from a systems biology study of five human vaccines.
-
Long noncoding RNAs are involved in multiple immunological pathways in response to vaccination.Long noncoding RNAs are involved in multiple immunological pathways in response to vaccination.
-
Metabolic Phenotypes of Response to Vaccination in Humans.Metabolic Phenotypes of Response to Vaccination in Humans.
-
Hidden in plain sight: uncovering the role of CREB1 in HIV-1 vaccine-induced immunityHidden in plain sight: uncovering the role of CREB1 in HIV-1 vaccine-induced immunity
-
Transcriptomic signatures induced by the Ebola virus vaccine rVSV-ZEBOV-GP in adult cohorts in Europe, Africa, and North America: a molecular biomarker studyTranscriptomic signatures induced by the Ebola virus vaccine rVSV-ZEBOV-GP in adult cohorts in Europe, Africa, and North America: a molecular biomarker study
-
Baseline gene signatures of reactogenicity to Ebola vaccination: a machine learning approach across multiple cohortsBaseline gene signatures of reactogenicity to Ebola vaccination: a machine learning approach across multiple cohorts
-
Global blood miRNA profiling unravels early signatures of immunogenicity of Ebola vaccine rVSVΔG-ZEBOV-GPGlobal blood miRNA profiling unravels early signatures of immunogenicity of Ebola vaccine rVSVΔG-ZEBOV-GP