Evolution and epidemic spread of SARS-CoV-2 in Brazil.
Brazil currently has one of the fastest-growing severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) epidemics in the world. Because of limited available data, assessments of the impact of nonpharmaceutical interventions (NPIs) on this virus spread remain challenging. Using a mobility-driven transmission model, we show that NPIs reduced the reproduction number from >3 to 1 to 1.6 in São Paulo and Rio de Janeiro. Sequencing of 427 new genomes and analysis of a geographically representative genomic dataset identified >100 international virus introductions in Brazil. We estimate that most (76%) of the Brazilian strains fell in three clades that were introduced from Europe between 22 February and 11 March 2020. During the early epidemic phase, we found that SARS-CoV-2 spread mostly locally and within state borders. After this period, despite sharp decreases in air travel, we estimated multiple exportations from large urban centers that coincided with a 25% increase in average traveled distances in national flights. This study sheds new light on the epidemic transmission and evolutionary trajectories of SARS-CoV-2 lineages in Brazil and provides evidence that current interventions remain insufficient to keep virus transmission under control in this country.
Authors
Darlan S Candido; Ingra M Claro; Jaqueline G de Jesus; William M Souza; Filipe R R Moreira; Simon Dellicour; Thomas A Mellan; Louis du Plessis; Rafael H M Pereira; Flavia C S Sales; Erika R Manuli; Julien Thézé; Luiz Almeida; Mariane T Menezes; Carolina M Voloch; Marcilio J Fumagalli; Thaís M Coletti; Camila A M da Silva; Mariana S Ramundo; Mariene R Amorim; Henrique H Hoeltgebaum; Swapnil Mishra; Mandev S Gill; Luiz M Carvalho; Lewis F Buss; Carlos A Prete; Jordan Ashworth; Helder I Nakaya; Pedro S Peixoto; Oliver J Brady; Samuel M Nicholls; Amilcar Tanuri; Átila D Rossi; Carlos K V Braga; Alexandra L Gerber; Ana Paula de C Guimarães; Nelson Gaburo; Cecila Salete Alencar; Alessandro C S Ferreira; Cristiano X Lima; José Eduardo Levi; Celso Granato; Giulia M Ferreira; Ronaldo S Francisco; Fabiana Granja; Marcia T Garcia; Maria Luiza Moretti; Mauricio W Perroud; Terezinha M P P Castiñeiras; Carolina S Lazari; Sarah C Hill; Andreza Aruska de Souza Santos; Camila L Simeoni; Julia Forato; Andrei C Sposito; Angelica Z Schreiber; Magnun N N Santos; Camila Zolini de Sá; Renan P Souza; Luciana C Resende-Moreira; Mauro M Teixeira; Josy Hubner; Patricia A F Leme; Rennan G Moreira; Maurício L Nogueira; Neil M Ferguson; Silvia F Costa; José Luiz Proenca-Modena; Ana Tereza R Vasconcelos; Samir Bhatt; Philippe Lemey; Chieh-Hsi Wu; Andrew Rambaut; Nick J Loman; Renato S Aguiar; Oliver G Pybus; Ester C Sabino; Nuno Rodrigues Faria
External link
Publication Year
Publication Journal
Associeted Project
Digital Epidemiology
Lista de serviços
-
As antisense RNA gets intronic.As antisense RNA gets intronic.
-
Androgen responsive intronic non-coding RNAs.Androgen responsive intronic non-coding RNAs.
-
Conserved tissue expression signatures of intronic noncoding RNAs transcribed from human and mouse loci.Conserved tissue expression signatures of intronic noncoding RNAs transcribed from human and mouse loci.
-
The intronic long noncoding RNA ANRASSF1 recruits PRC2 to the RASSF1A promoter, reducing the expression of RASSF1A and increasing cell proliferation.The intronic long noncoding RNA ANRASSF1 recruits PRC2 to the RASSF1A promoter, reducing the expression of RASSF1A and increasing cell proliferation.
-
Antisense intronic non-coding RNA levels correlate to the degree of tumor differentiation in prostate cancer.Antisense intronic non-coding RNA levels correlate to the degree of tumor differentiation in prostate cancer.
-
Insight Into the Long Noncoding RNA and mRNA Coexpression Profile in the Human Blood Transcriptome Upon Leishmania infantum Infection.Insight Into the Long Noncoding RNA and mRNA Coexpression Profile in the Human Blood Transcriptome Upon Leishmania infantum Infection.
-
Long non-coding RNAs associated with infection and vaccine-induced immunityLong non-coding RNAs associated with infection and vaccine-induced immunity
-
Comparative transcriptomic analysis of long noncoding RNAs in Leishmania-infected human macrophagesComparative transcriptomic analysis of long noncoding RNAs in Leishmania-infected human macrophages