Gene Signatures of Symptomatic and Asymptomatic Clinical-Immunological Profiles of Human Infection by Leishmania (L.) chagasi in Amazonian Brazil
Individuals infected with Leishmania (L.) chagasi may present different asymptomatic and symptomatic stages of infection, which vary in the clinical-immunological profiles that can be classified as asymptomatic infection (AI), subclinical resistant infection (SRI), indeterminate initial infection (III), subclinical oligosymptomatic infection (SOI), and symptomatic infection (SI) (=American visceral leishmaniasis, AVL). However, little is known about the molecular differences between individuals having each profile. Here, we performed whole-blood transcriptomic analyses of 56 infected individuals from Pará State (Brazilian Amazon), covering all five profiles. We then identified the gene signatures of each profile by comparing their transcriptome with those of 11 healthy individuals from the same area. Symptomatic individuals with SI (=AVL) and SOI profiles showed higher transcriptome perturbation when compared to those asymptomatic III, AI and SRI profiles, suggesting that disease severity may be associated with greater transcriptomic changes. Although the expression of many genes was altered on each profile, very few genes were shared among the profiles. This indicated that each profile has a unique gene signature. The innate immune system pathway was strongly activated only in asymptomatic AI and SRI profiles, suggesting the control of infection. In turn, pathways such as MHC Class II antigen presentation and NF-kB activation in B cells seemed to be specifically induced in symptomatic SI (=AVL) and SOI profiles. Moreover, cellular response to starvation was down-regulated in those symptomatic profiles. Overall, this study revealed five distinct transcriptional patterns associated to the clinical-immunological (symptomatic and asymptomatic) profiles of human L. (L.) chagasi-infection in the Brazilian Amazon
Authors
da Matta VLR, Goncalves AN, Gomes CMC, et al.
External link
Publication Year
Publication Journal
Associeted Project
Network & Precision Medicine
Lista de serviços
-
As antisense RNA gets intronic.As antisense RNA gets intronic.
-
Androgen responsive intronic non-coding RNAs.Androgen responsive intronic non-coding RNAs.
-
Conserved tissue expression signatures of intronic noncoding RNAs transcribed from human and mouse loci.Conserved tissue expression signatures of intronic noncoding RNAs transcribed from human and mouse loci.
-
The intronic long noncoding RNA ANRASSF1 recruits PRC2 to the RASSF1A promoter, reducing the expression of RASSF1A and increasing cell proliferation.The intronic long noncoding RNA ANRASSF1 recruits PRC2 to the RASSF1A promoter, reducing the expression of RASSF1A and increasing cell proliferation.
-
Antisense intronic non-coding RNA levels correlate to the degree of tumor differentiation in prostate cancer.Antisense intronic non-coding RNA levels correlate to the degree of tumor differentiation in prostate cancer.
-
Insight Into the Long Noncoding RNA and mRNA Coexpression Profile in the Human Blood Transcriptome Upon Leishmania infantum Infection.Insight Into the Long Noncoding RNA and mRNA Coexpression Profile in the Human Blood Transcriptome Upon Leishmania infantum Infection.
-
Long non-coding RNAs associated with infection and vaccine-induced immunityLong non-coding RNAs associated with infection and vaccine-induced immunity
-
Comparative transcriptomic analysis of long noncoding RNAs in Leishmania-infected human macrophagesComparative transcriptomic analysis of long noncoding RNAs in Leishmania-infected human macrophages